State of Charge Estimation for Lithium-Ion Battery Based on Nonlinear Observer: An H∞ Method

نویسندگان

  • Qiao Zhu
  • Neng Xiong
  • Ming-Liang Yang
  • Guang-Di Hu
  • Izumi Taniguchi
چکیده

This work is focused on the state of charge (SOC) estimation of a lithium-ion battery based on a nonlinear observer. First, the second-order resistor-capacitor (RC) model of the battery pack is introduced by utilizing the physical behavior of the battery. Then, for the nonlinear function of the RC model, a one-sided Lipschitz condition is proposed to ensure that the nonlinear function can play a positive role in the observer design. After that, a nonlinear observer design criterion is presented based on the H∞ method, which is formulated as linear matrix inequalities (LMIs). Compared with existing nonlinear observer-based SOC estimation methods, the proposed observer design criterion does not depend on any estimates of the unknown variables. Consequently, the convergence of the proposed nonlinear observer is guaranteed for any operating conditions. Finally, both the static and dynamic experimental cases are given to show the efficiency of the proposed nonlinear observer by comparing with the classic extended Kalman filter (EKF).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Observer Design for the State of Charge of Lithium-Ion Batteries

As rechargeable lithium-ion batteries are widely used in many applications nowadays, how to accurately evaluate the battery’s state of charge(SOC) becomes a more and more important issue. A new method for estimating the SOC of lithium-ion batteries based on an inclusive equivalent circuit model is proposed in this paper. To the best of our knowledge, the parameters in the model are usually cons...

متن کامل

Estimation of State of Charge of a Lithium-Ion Battery Pack for Electric Vehicles Using an Adaptive Luenberger Observer

In order to safely and efficiently use the power as well as to extend the lifetime of the traction battery pack, accurate estimation of State of Charge (SoC) is very important and necessary. This paper presents an adaptive observer-based technique for estimating SoC of a lithium-ion battery pack used in an electric vehicle (EV). The RC equivalent circuit model in ADVISOR is applied to simulate ...

متن کامل

Development of Lifetime Prediction Model of Lithium-Ion Battery Based on Minimizing Prediction Errors of Cycling and Operational Time Degradation Using Genetic Algorithm

Accurate lifetime prediction of lithium-ion batteries is a great challenge for the researchers and engineers involved in battery applications in electric vehicles and satellites.  In this study, a semi-empirical model is introduced to predict the capacity loss of lithium-ion batteries as a function of charge and discharge cycles, operational time, and temperature. The model parameters are obtai...

متن کامل

State of charge estimation for Lithium Ion cells: Design of experiments, nonlinear identification and fuzzy observer design

A new systematic approach to state of charge (SoC) observer design for battery cells is presented. It is based on a purely data driven model and a nonlinear observer constructed from it. As a key novelty, a unified and generic framework for model generation (i.e. design of experiments, nonlinear model structure) and observer parametrisation is presented. An integral part of SoC observers in hyb...

متن کامل

Estimation of State of Charge of Lithium-ion Battery Based on Photovoltaic Generation Energy Storage System

Original scientific paper The fast and accurate estimation of state of charge (SOC) of lithium-ion battery is one of the key technologies of battery management system. In view of this nonlinear dynamic system of lithium battery, through the test and analysis of lithium-ion battery hysteresis characteristics, the second-order RC hysteresis model is established, and the cubature Kalman filter alg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017